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1 Context variables: social background, home language and 

migration status 

1.1 Social background 

The ÜGK social background index (or socioeconomic status - SES) is a composite score. Its calculation 

is based on three indicators: the highest parental occupational status, the highest parental education 

level, and the number of books at home. This procedure is in line with the indicators used in the 

international computer and information literacy study (ICILS, Schulz & Friedman, 2015), the 

educational standard survey (BIST-Ü) in Austria (Pham et al., 2014), and represents an adaptation of 

the index of economic, social and cultural status (ESCS) as used in PISA 2012 (OECD, 2014). 

1.1.1 Highest parental occupational status 

The parental occupations were obtained via student responses (open-response format) to questions 

MB08 and MB10 in the student questionnaire. The student responses on parental occupations were 

coded into four-digit codes according to the International standard classification of occupations 

(ISCO-08) framework (Ganzeboom & Treiman, 2008; Ganzeboom, De Graaf, & Treiman, 1992), then 

transformed to the international socioeconomic index of occupational status (ISEI-08; Ganzeboom, 

2010a, 2010b). These codes are contained in the variables occupm_isei08 (occupational status of 

mother – ISEI-08 status) and occupf_isei08 (occupational status of father – ISEI-08 status).  

The highest occupational status of parents (hisei08) corresponds to the higher value between 

occupm_isei08 and occupf_isei08, in case both items were answered. If only one value is 

available, hisei08 corresponds to this value. The variable hisei08 is missing, if both parental 

occupation items were not answered. 

In order to construct the social background index for the national report, all missing values of 

occupm_isei08 and occupf_isei08 were multiply imputed (see chapter 2). Within each 

imputed dataset, the value of hisei08 corresponded to the higher value of occupm_isei08 and 

occupf_isei08. 

1.1.2 Highest parental education level 

Parental education was assessed by means of questions MB12a and MB13a in the student 

questionnaire.  Based on the following options, students reported on the highest educational 

attainment of their mother (meduc_org) and father (feduc_org): 

• 1 = never attended school 

• 2 = primary level education (4-6 years) 

• 3 = compulsory education (primary and lower secondary levels, 7-9 years) 

• 4 = upper secondary level VET (including Handels(mittel)schule, Fachmittelschule (formerly 

Diplommittelschule)) 

• 5 = Baccalaureate (general or vocational, including former primary teacher training diploma) 

• 6 = non-university tertiary level VET (e.g. Eidg. Fachausweis, Meisterdiplom) 

• 7 = Tertiary level university (including HTL, HWV, Fachhochschulen [UAS], Pädagogische 

Hochschulen) 

• 8 = Other education or training, that is (open response) 

• 19 = I don’t know 
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In the cleaning process, category 8 (other education or training) was recoded into one of the other 

seven categories using students’ open responses whenever possible. Category 19 was treated as 

missing. Variables meduc and feduc contain the cleaned data. 

Two new variables medu (mother’s highest educational attainment) and fedu (father’s highest 

educational attainment) were created by recoding meduc and feduc and reducing them into the 

following categories: 

• 0 = compulsory schooling only 

• 1 = upper secondary education 

• 2 = tertiary education 

• 8 = other 

The recoding rules were decided based on the absolute frequency distribution of the seven original 

categories and the average student achievement in mathematics at two levels: the national level and 

the linguistic-regional level. In addition, corresponding data of the ÜGK 2017 survey were considered 

as well, since identical coding rules and calculation of the social background index in both studies 

were intended. 

In the raw dataset, the highest parental educational level (fmedu) corresponds to the higher value of 

medu and fedu (category 8 was treated as a missing code in recoding process). In case one of these 

two values is missing, the value of fmedu corresponds to the only available value. If both values are 

missing, fmedu has missing value. 

The highest parental educational level (fmedu) corresponds to the higher value between medu and 

fedu, in case both items were answered (category 8 was treated as a missing value during the 

recoding process). If only one value is available, fmedu corresponds to this value. The variable fmedu 

is missing, if both parental education items were not answered. 

In order to construct the SES for the national report, all missing values of medu and fedu were 

multiply imputed (see chapter 2). Within each imputed dataset, the value of fmedu corresponds to 

the higher value of medu and fedu. 

1.1.3 Number of books at home 

The third indicator for the social background index is based on student responses to question F18 in 

the student questionnaire. Students reported the numbers of books at home by choosing one of the 

following options (variable books): 

• 1 = none  

• 2 = 1-10 books 

• 3 = 11-50 books 

• 4 = 51-100 books 

• 5 = 101-250 books 

• 6 = 251-500 books 

• 7 = more than 500 books 

 

On this basis, a new variable nbooks was created to construct the index of social background by 

recoding variable books into the following five categories: 
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• 0 = 0-10 books 

• 1 = 11-50 books 

• 2 = 51-100 books 

• 3 = 101-250 books 

• 4 = more than 250 books 

 

The recoding rules were decided based on the frequency distribution of the seven original categories 

and the average student achievement in mathematics at the national level as well as within each of 

the three linguistic regions. Corresponding data of the ÜGK 2017 survey were considered as well to 

enable identical coding rules and calculation of the social background index in both studies. 

To construct the social background index for the national report, all missing values of nbooks were 

multiply imputed (see chapter 2). 

Notes:  

In PISA, one of the three indices incorporated in the ESCS is the index of household possessions, 

which comprised all items on the family wealth possessions (wealth), cultural possessions 

(cultpos), home educational resources (hedres) and the number of books at home (OECD, 2014, p. 

316, 351). In ÜGK, some items of wealth, cultpos and hedres scales were included in the student 

questionnaire, however, they were not used to construct the index of social background due to the 

following reasons:  

• High percentages of missing values in ÜGK 2016: Since two student questionnaire versions 

were used in ÜGK 2016, only about 50% of the survey sample reported on possessions and 

educational resources (Sacchi & Oesch, 2017).  

• Problematic psychometric parameters: The mean scores of several items were very high, e.g. 

internet connection is available in more than 95% families. Several items correlated not at all 

or negatively with student achievement in mathematics. Differential item functioning in 

different linguistic regions was found for one item of the cultural possessions scale 

(possession of classical literature at home). While the number of books at home was a 

statistically significant positive predictor of student achievement in mathematics, almost all 

other items had no predictive power after controlling for the effect of number of books at 

home, as suggested by multiple regression analyses.  

• The number of books at home could be seen as an indicator of both factors representing the 

wealth and cultural possession indices: Parallel analysis based on a polychoric correlation 

matrix of all items (number of books at home and all wealth and cultural possession items) 

suggested that there were two dominant factors underlying all these items. Results of an 

explorative factor analysis with two factors showed that all wealth items loaded highly 

positively on one factor and not on the other factor; all cultural possession items loaded 

highly positively only on the other factor; nbooks had high positive loadings on both factors.  

In other studies such as the ICILS 2013 (Schulz & Friedman, 2015) or the BIST-Ü in Austria (Pham, 

Freunberger, & Robitzsch, 2014), wealth, cultural possessions and home educational resources scales 

were not involved in constructing the index of social background. 
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1.1.4 Calculation 

The number of books at home nbooks was the strongest predictor of student achievement in 

different domains among three indicators of the social background index (mathematics, ÜGK 2016: r 

= .38, p < .001; L1-reading, ÜGK 2017: r = .36, p < .001). Therefore, this variable should not have 

lower weight than the other two variables (hisei08 and fmedu) in computing the social background 

index. This would be the case, if the same statistical approach as in PISA 2012 were applied 

(component scores for the first principal component, OECD, 2014, p. 352). The two indices hisei08 

and fmedu correlated namely stronger with each other (r = .43) than with the number of books at 

home (r = .29-.41). In ÜGK 2016 and ÜGK 2017, the normative weights of all three indices were set 

equal while calculating the social background index. The same approach was applied in the 

educational standard survey in Austria (Pham, Freunberger, & Robitzsch, 2014). 

The calculation of the ÜGK social background index is represented by the following formula: 

���� = �����, 

���� = �ℎ	
�	08 + ������ + ������

3 , 

zhisei08, zfmedu and znbooks are the z-scores of the three basic indices (hisei08, fmedu and 

nbooks). Weighted data (using sampling weights) were used to standardize variables.  

For the national report, 100 imputed datasets (see chapter 2) were applied. First, the SES1 – the 

weighted mean of zhisei08, zfmedu and znbooks – and SES2 – the z-score of SES1 (using 

weighted data) – were calculated for each imputed dataset. Then, the final SES variable – the social 

background index – was calculated by transforming SES2 in each imputed dataset as follows: 

��� = ���� −	����������
, 

����� represents the overall weighted mean and ����� the overall weighted standard deviation of 

SES2 over all imputed datasets (see chapter 3). For this reason, SES has an overall weighted mean of 

zero and an overall weighted standard deviation of one over all imputed datasets. 

In order to compute the social background index SES based on the raw data, an appropriate 

approach to deal with missing data should be considered first. Then, the same procedure can be 

applied to calculate the social background index. 

1.2 Home language 

Questions MB17a to MB18c in the student questionnaire asked students about their main and 

second languages spoken at home. Variables langhome_org, langhome_a contain student 

responses in regard to the main language spoken at home; variables langhome2f, langhome2_org 

and langhome2_a contain student responses in regard to the second language spoken at home, if 

available.  

Open responses were considered during data cleaning. Variables langhome, langhome2f and 

langhome2 contain recoded data. Based on these three variables, two new variables (homelang1 

and homelang2) were created: 
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• homelang1: the main language spoken at home is the school language (0 = false, 1 = true) 

• homelang2: the second language spoken at home is the school language (0 = false, 1 = true) 

The final variable regarding home language (homelang) is coded using the same definition as in PISA 

2015 (OECD, 2016, p. 243) based on data of three variables homelang1, homelang2f and 

homelang2. The variable contains three levels: 

• homelang = 1: only the school language is spoken at home 

• homelang = 2: the school language and another language are regularly spoken at home 

• homelang = 3: the school language is not spoken at home 

The coding rules were different for different linguistic regions in Switzerland: 

• In the German language region Swiss German, Liechtenstein dialect, and Standard German 

was treated as the school language. 

• In the French language region French only (no dialect option in the questionnaire) was 

treated as the school language. 

• In the Italian language region Italian and its dialects were treated as the school language.  

 

For the national report, imputed datasets were used. All missing values of the three basic variables 

homelang1, homelang2f, and homelang2 (if available) were multiply imputed (see chapter 2). 

Within each imputed dataset, the variable homelang was derived from these three basic variables. 

The reported results were derived based on the pooled results over all imputed datasets (see chapter 

3). 

1.3 Immigration status 

The immigration status in ÜGK 2016 was defined identically as in PISA 2015 (OECD, 2016, p. 243) 

using three categories:  

•••• Non-immigrant students or ‘students without an immigrant background’ are those whose 

mother or father or both was/were born in Switzerland, regardless of the birth place of the 

student. 

•••• Immigrant students or ‘students with an immigrant background’ are those whose mother 

and father were both not born in Switzerland. Among them, a distinction is made between 

students who were born in Switzerland and students who were born abroad: 

o First-generation immigrant students are foreign-born students whose parents are 

both foreign-born. 

o Second-generation immigrant students are students who were born in Switzerland 

and whose parents are both foreign-born. 

Question MB14 in the student questionnaire asked students about their country of birth (variable 

cobs) as well as the country of birth of their mother (variable cobm) and father (variable cobf).  

Based on students’ responses, three new variables were coded, which indicate whether the student 

(cobs_frgn), the mother (cobm_frgn), and the father (cobf_frgn) was born abroad (value = 1) or 

in Switzerland (value = 0).  



ÜGK – COFO – VECOF 2016 results: Technical appendices 

9 

For the national report, all missing values of the three basic variables cobs_frgn, cobm_frgn, and 

cobf_frgn were first multiply imputed (see chapter 2). Within each imputed dataset, the variable 

immig_pisa was derived from these three basic variables with three categories corresponding to 

the above mentioned definition: 

•••• immig_pisa = 1: Non-immigrant student. 

•••• immig_pisa = 2: Second-generation immigrant student. 

•••• immig_pisa = 3: First-generation immigrant student. 

The reported results regarding immigration status were the pooled results over all imputed datasets 

(see chapter 3). 

In the raw dataset, an appropriate approach to deal with missing data should be considered first. 

Then, variable immig_pisa can be derived using the same rules based on three variables 

cobs_frgn, cobm_frgn, and cobf_frgn.  
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2 Dealing with missing values of context variables 

Missing values of context variables could lead to biased estimates. Based on the technique of 

multiple imputation (MICE, Multiple Imputation by Chained Equations, see van Buuren, 2012; 

Robitzsch, Pham & Yanagida, 2016), missing values of these variables were imputed multiple times 

utilizing (correlated) observed student information and taking into account the hierarchical structure 

of the data (students nested within schools). For this purpose, the R-package miceadds (see 

Robitzsch, Grund & Henke, 2018) was applied. Separately by canton, each missing value was imputed 

five times based on one plausible value set (for plausible values see Angelone & Keller, 2019; the 

imputation approach is called nested multiple imputation by plausible value, cf. Shen, 2000; Rubin, 

2003). Given 20 plausible value sets of student achievement, this resulted in 100 (20 x 5) nested 

multiply imputed datasets, which served as the basis for all reported results and analyses in the 

national report.  
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3 Estimation of descriptive results and measurement errors 

All results including confidence intervals of the test data – if the context data were not involved – 

were estimated using standard combining rules based on 20 plausible values (Rubin’s rule, Rubin, 

1987). All results involving the context data were estimated using the modified combining rules for 

nested multiply imputed datasets (Rubin, 2003). In addition, due to the complex sampling design (see 

Verner & Helbling, 2019), there was some disproportionalities in the sample data. All analyses, 

referring to population measures, were conducted using sampling weights and replicate weights to 

take this into account (cf. OECD, 2017; Bruneforth et al., 2016; Foy, 2012; Enders, 2010). Analyses for 

the report were performed using the R-package BIFIEsurvey (BIFIE, 2018). There were exceptions: 

multilevel analyses (chapter 5.2.3 in the national report) were performed using slightly different data 

basis, methodological approach and software (see section 4.2). 

3.1 Estimation of point estimates using multiply imputed datasets 

3.1.1 Point estimates involving only test data 

All reported point estimates involving only test data at different levels (the proportion of students 

who achieved the minimum standards in mathematics) were pooled estimates using 20 plausible 

values. This means that each analysis was performed 20 times, each time based on one plausible 

value. Afterwards, all 20 estimates were pooled to yield the final result. The pooled point estimate �̂ 

(e.g. mean, effect size) is the arithmetic average over all 20 estimates �̂  (	 = 1, 2… 20): 

�̂ = ∑ �̂ �" #�	
20  

3.1.2 Point estimates involving context variables 

All reported point estimates involving the context variables at different levels (e.g. the proportion of 

students without migration status) were pooled estimates using 100 imputed datasets (five imputed 

datasets per plausible value). This means that each analysis was performed 100 times, each time 

based on one imputed dataset. Afterwards, all 100 estimates were pooled to yield the final result. 

The pooled point estimate �̂ (e.g. mean, effect size) is the arithmetic average over all respective 100 

estimates �̂ ,% (	 = 1, 2… 20; j = 1, 2… 5): 

�̂ = 1
20 ∙ 5))�̂ ,%

*

%#�

�"

 #�
 

 

3.2 Estimation of measurement errors and confidence intervals of the point 

estimates 

3.2.1 Measurement errors and confidence intervals of point estimates involving only 

test data 

The estimation variance of a point estimate �̂ involving only test data was calculated by combining 

two components: the variance component within each plausible value 	 +�,-., (�̂) 

(within-imputation variance or sampling variance) and the variance component caused by variation 

between plausible values +/-.(�̂) (between-imputation variance, cf. Mislevy et al., 1992).  
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The between-imputation variance +/-.(�̂) is the product of the sum of squares of differences 

between each estimate �̂  and the pooled estimate �̂ with a constant factor: 

+/-.(�̂) = 21 + 1
203 ∙ )(�̂ −

�"

 #�	
�̂)� 

The within-imputation variance was estimated using Fay’s method (Judkins, 1990) as applied in PISA 

(OECD, 2017). For this purpose, 120 replicate zones were generated (Verner & Helbling, 2019). The 

point estimate of interest �̂4,  was calculated within each replicate zone 5 (r = 1, 2… 120) with 

corresponding replicate weights. The variance of �̂4,  over all 120 replicate zones represents the 

within-imputation variance per plausible value 	 and was calculated with a Fay factor of 0.5: 

+�,-., (�̂ ) = 1
120 ∙ 0.5� ∙ )(�̂4, 	−

��"

4#�	
�̂ )� 

The sampling variance of the pooled estimate �̂ over all 20 plausible values is: 

+�,-.(�̂) = ∑ +�,-., (�̂ )�" #�
20  

Altogether, the estimation variance of �̂ is: 

+789,:(�̂) = +/-.(�̂) + +�,-.(�̂) 

The measurement error �� of each point estimate �̂ corresponds to the square root of the 

estimation variance:  

��(�̂) = ;+789,:(�̂) 

Finally, the lower and upper bounds of the 95% confidence interval of each reported result were 

calculated. This statistical interval represents a range of values that might contain (with 95% 

confidence level) the true value of the result of interest. Unless otherwise indicated, the lower 

(<=:8>) and upper (<=?..) bound of this interval were calculated as follows: 

<=:8>(�̂) = �̂ − 1.96 ∙ ��(�̂);	<=?..(�̂) = �̂ + 1.96 ∙ ��(�̂) 

3.2.2 Measurement errors and confidence intervals of point estimates involving 

context variables 

The variance of a point estimate �̂ involving context variables was calculated slightly differently, since 

the imputed datasets within a nest (5 imputed datasets were nested within one plausible value set) 

were correlated. 

In order to calculate the between-imputation variance +/-.(�̂), two components were considered: 

the between-nest (between-plausible values) variance +/-.,C(�̂) and the within-nest (within 

plausible value) variance +/-.,>(�̂). 

Let �̂ ,%  (j = 1…5) be the estimate based on the jth imputed dataset nested within the ith plausible 

value, �̂  – the average estimate related to the ith plausible value – was calculated as follow: 
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�̂ = ∑ �̂ ,%*%#�	
5  

The between-nest variance is: 

+/-.,C(�̂) = 5
20 − 1)(�̂ − �̂)�

�"

 #�
 

The within-nest variance is: 

+/-.,>(�̂) = 1
20 ∙ (5 − 1)))(�̂ ,% − �̂%)�

*

%#�

�"

 #�
 

 

Now, the between-imputation variance +/-.(�̂) is: 

+/-.(�̂) = 1
5 21 + 1

203+/-.,C(�̂) + (1 − 1
5)+/-.,>(�̂) 

The within-imputation variance was estimated identically as described in section 3.2.1, now based on 

all 100 imputed datasets. The point estimate �̂4, ,% was calculated within each replicate zone 5 (r = 1, 

2… 120) with corresponding replicate weights. The variance of �̂4, ,% over all 120 replicate zones 

represents the within-imputation variance per imputed value set j per plausible value set i and was 

calculated with the Fay factor equal 0.5 as follows: 

+�,-., %D�̂ ,%E = 1
120 ∙ 0.5� ∙ )(�̂4, ,% 	−

��"

4#�	
�̂ ,%)� 

The sampling variance of the pooled estimate �̂ over all 100 imputed datasets is: 

+�,-.(�̂) = ∑ +�,-., %D�̂ ,%E�""�
100  

 

Altogether, the total estimation variance of �̂ is: 

+789,:(�̂) = +/-.(�̂) + +�,-.(�̂) 

The measurement error �� of each point estimate �̂ corresponds to the square root of the 

estimation variance. The lower and upper bounds of the 95% confidence interval of each reported 

result were calculated identically as described in section 3.2.1 above: 

��(�̂) = ;+789,:(�̂) 

<=:8>(�̂) = �̂ − 1.96 ∙ ��(�̂);	<=?..(�̂) = �̂ + 1.96 ∙ ��(�̂) 
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3.2.3 Notes 

By implementing the aforementioned procedures, an infinite population was assumed during the 

calculation of sampling variances. Employing this procedure, the cantonal sampling variances were 

not adjusted for the (unequal) sampling rates in cantons (no finite population correction was 

applied). As a result, for small cantons with comparatively large shares of students participating (e.g., 

full census cantons), the sampling variance might be large despite full census. With this, we intended 

to take the possible cohort effect into account. Results of one student cohort might be different from 

results of another student cohort under the same educational framework and conditions. The cohort 

effect might be larger in small cantons due to small sample size. If the finite population correction 

method were applied to calculate the sampling variance, results of small cantons would often differ 

statistically significantly from the average, even in case the difference were very small. This could 

sometimes lead to difficulties in interpreting the results.  

Therefore, we decided to apply this rather conservative approach in estimating the variance of point 

estimates, which was applied in PISA (OECD, 2017) as well. 

3.3 Calculation and interpretation of Cohen’s d 

Beside the absolute difference and the statistical significance of differences between any two groups, 

the effect size Cohen’s d (Cohen, 1988) was calculated and reported. 

Statistically, an effect size is defined as follows: 

� = F
�G 

F is the absolute difference between two groups, �G is the pooled sample standard deviation:  

F = �̂� − �̂� 

�G = H(�G�� + �G��)/2 

�̂� and �G�are the estimate and corresponding sample standard deviation in the first group, �̂� and 

�G� are the estimate and corresponding sample standard deviation in the second group. The 

reported � values were calculated based on all imputed datasets as described in section 3.1. 

All reported Cohen's d effect sizes were derived as mentioned above, except for comparisons 

between cantonal and national levels (shown in part 2 of the report). To calculate the effect size 

regarding the difference between a population (e.g. Switzerland) and one of its sub-sample (i.e. 

canton), the population standard deviation was used instead of the pooled standard deviation. 

Cohen (1988) suggested that � ≥ 0.2 can be interpreted as a small, � ≥ 0.5 a medium, and � ≥ 0.8 

a large effect size. Hattie (2009, p. 9) suggested � ≥ 0.2 for small, � ≥ 0.4 for medium, and � ≥ 0.6 

for large effect size when judging educational outcomes. In this report, we used the suggestions of 

Hattie to interpret the effect sizes.  
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3.4 A note on the results of the subscales 

The standard setting method used in PISA was adopted to determine the cut-off value between two 

levels – minimum standard attained and not attained – based on the whole item pool and the total 

test scores in mathematics (Angelone & Keller, 2019). By applying this approach, the same cut-off 

value was assumed for all subscales in mathematics. Therefore, the proportions of students who 

achieved the minimum standard in all subscales (absolute results) at the national level were all 

identical to the result in mathematics as a whole. Only if this assumption holds, the absolute results 

of the subscales can be interpreted. 

Of each subscale, a comparison between the cantonal and the national result can still be made. Over 

all subscales, these differences can be considered together to judge whether a canton has special 

strengths/weaknesses in comparison to other cantons. Nevertheless, this does not tell if the absolute 

result of one subscale is better/worse than the absolute result of another subscale at the cantonal 

level. 

The confidence intervals regarding the results of the subscales were not illustrated in the report due 

to two reasons. First, the absolute values at the national level were not measured in an exact 

manner. Second, the number of items of each subscale per booklet – which have the item difficulty 

lower than the cut-off value – was small. This number ranged between 0 and 8 depending on booklet 

and subscale. Therefore, both, the absolute values and the corresponding confidence intervals 

regarding the results of the subscales did not possess the same accurateness as other reported 

results. 

In summary, the results of the subscales should be interpreted with caution.  
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4 Special analyses 

4.1 Differences between students with and without an immigrant background 

after controlling for social background 

The achievement differences between students with and without immigrant background after 

controlling for the effect of social background were reported in chapter 5.2.2 of the national report. 

For this purpose, the potential outcome approach (POA) was applied. This is one of the most 

established approaches to study causal relationship between variables (Gangl, 2010; Lüdtke et al., 

2010; Imbens & Wooldridge, 2009; Morgan & Winship, 2007; Winship & Morgan, 1999). It considers 

and explicitly deals with the different distributions of the index of social background (see Figure 1) 

between two student groups and does not assume the same effect of interest over all groups of 

comparison (see Table 1). This approach has been introduced to the educational research field 

(Lüdtke et al., 2010) and was applied in the educational standard survey (BIST-Ü) in Austria 

(Freunberger et al., 2014; Pham et al., 2014).  

Figure 1: Distribution of social background index of students with and without migration status 

 

While a large proportion of students with an immigrant background has an index of social 

background lower than 0, more than 50% students without migration status has an index of social 

background higher than 0. Due to this difference, it was suspected that the effect of social 

background on the attainment of minimum standards in mathematics might vary between the two 

groups of students. In fact, the results of two logistic regressions with social background index as 

predictor and attainment of minimum standards (0 = not attained, 1 = attained) as dependent 

variable confirmed this assumption. The social background effect differed significantly between the 

two groups as shown in Table 1: 

Table 1: Effect of social background on the attainment of minimum standards 

 Students without immigrant background Students with an immigrant background 

Intercept LM 0.71 (SE = .03) 0.19 (SE = .04) 

Regression coefficient LN 0.80 (SE = .03) 0.66 (SE = .04) 

Notes: results in log odds. SE = standard error 
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Using the terminology of experimental studies, this means that students were not randomly assigned 

to these two groups considering their social background. Thus, the mean difference in student 

outcomes (attainment of minimum standards) without adjustment might be biased and does not 

match the true difference with exclusive reference to the different migration statuses.  

The reported difference between the two groups of students (with and without immigrant 

background) after controlling for the effect of social background was the Average Treatment Effect 

(ATE) as called in the POA. It can be interpreted as the mean difference in the outcome variable 

between two groups of students, if they had the same social background. For all students of each 

group, a potential outcome was calculated under the assumption that they belonged to the other 

group. Thus, for every student, a real outcome and a potential outcome were available. The ATE 

reflects the mean difference in student outcomes between students without and with an immigrant 

background considering both the real and the potential outcomes: 

OP�	 = 	�[F] 	= 	�[S	|	��� = 
,U = 0]	– 	�[S	|	��� = 
,U = 1], 
F is the individual difference in outcomes (S) of each student (with ��� = 
) between two statuses: 

having no immigrant background (U = 0) and having an immigrant background (U = 1); �[] 
denotes the average or mean of the value in brackets. 

The (potential or real) outcome of student 	 without an immigration background U = 0 is denoted 

by W " and the outcome of students with an immigration background U = 1 is denoted by W �. The 

individual difference in outcomes between two statuses is: 

F = W " − W �. 
The potential outcomes of every student with an immigration background were estimated using their 

own social background index and the group-specific SES effect of students without immigrant 

background (Table 1, column 2). In this case, W � represents the real outcome while W " stands for the 

potential outcome. 

The potential outcome of every student without an immigration background was estimated using 

their own social background index and the group-specific SES effect of students with immigrant 

background (Table 1, column 3). In this case, W � represents the potential outcome while W " stands 

for the real outcome. 

As described above, the ATE was calculated as the mean value of F over all students at the level of 

interest (national or cantonal level). 

4.2 Technical notes on multilevel regression analysis 

4.2.1 Method 

The multilevel model was developed in the mid-80s to study the influence of context on individuals 

(Aitkin & Longford, 1986; Goldstein, 1986; Mason, Wong & Entwisle, 1983; Raudenbush & Bryk, 

1986). In this model, the context is conceptualized as a hierarchical configuration composed of 

different levels nested within each other (micro-units should only belong to one higher level unit). In 

this case, considering that a student's performance (micro-unit) in the UGK 2016 tests depends on 

their own characteristics but also on their environment characteristics (in particular the canton 

where they are attending school (macro-unit)) leads to integrate the hierarchical structure of the 
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data into the analytical process. The multilevel analysis described in chapter 5.2.3 of the report was 

performed using a multilevel logistic regression1. A two-level regression analysis was carried out, 

with students serving as level 1 and cantons as level 2.The model coefficients and statistics were 

estimated using a restricted maximum likelihood procedure2. Non-response adjusted student base 

weights were used at level 1. Twenty binary plausible values (PVs) for the students’ attainment of 

minimum standards served as the outcome variable. Results of the final model are the average of the 

twenty estimates obtained with each of the PVs. 

4.2.2 Data and recoding variables 

The data file used for the multilevel analysis included 22’423 students from 29 cantons (half-cantons 

and parts of cantons (in the case of multilingual cantons) are here also referred to as "cantons"). 

The explanatory variables used in the analysis are briefly described in Table 2 and correspond to the 

means of the 100 multiply imputed datasets. For further information about these variables see 

chapter 1. 

Table 2: Explanatory variables used in multilevel analysis 

 

Categorical variables were recoded into a set of dummy variables. The number of dummy variables 

created from a categorical variable is smaller than the number of categories of the variable since one 

category is always used as a reference group. For each category, a dummy variable was created with 

the value of 1 if the student belongs to the respective category and 0 otherwise. 

4.2.3 Modelling student performance 

This section outlines the modelling strategy used in the multilevel analysis. For building the multilevel 

model, a step-by-step approach was adopted, starting from the student level upwards to the 

cantonal level. Readers interested in learning more about multilevel logistic regression can refer to 

Snijders & Bosker (1999), Bressoux (2010), Heck, Thomas & Tabata (2012) or Sommet & Morselli 

(2017). 

 

                                                           
1
 The commercial software HLM 7 (developed by Raudenbush, Bryk, Cheong, Congdon & du Toit) was used. 

2
 As mentioned in Bressoux (2010), there are two maximum likelihood estimation methods (one full and one 

restricted) and there is no total agreement among statisticians that one method is superior to the other.  

Snijders and Bosker (1999) point out that the full maximum likelihood can lead to significant biases when the 

number of groups is small which is the case with the UGK 2016 dataset (the practical rule they deliver is that 

"small" means lower than 30). 

 

 

Variable Name Variable type Categories Categories labels/description

Gender Categorical 0 Male

(Gender) 1 Female

Social background Continuous Z-standardized indice

(SES)

Migration status Categorical 1 Native

(Immig) 2 Migrant 2
nd

 generation

3 Migrant 1
st 

generation

Language spoken at home Categorical 1 Only school language is spoken at home

(Tlh3) 2 Different languages are spoken at home among these the school language

3 The school language is not spoken at home
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Step 1. «Empty» model and calculation of the intraclass correlation coefficient (ICC) 

The first information we look for when analysing hierarchical data is to estimate how the variance of 

the phenomenon is distributed over the different levels that are supposed to structure the data. To 

do this, a so-called «empty» model which does not include any explanatory variables is constructed. 

Its specification is defined as follows for a multilevel logistic regression: 

Level 1 (students) 

log 2 [\]
�^[\]

3 = β"`   (1) 

Level 2 (cantons) 

β"` = γ"" + u"`    with    �"%~dD0, �?e
� E   (2) 

 

Where i = 1,..., 22423 students, j = 1,…, 29 cantons and  f %  is the probability to achieve the core 

competencies in mathematics for student i within canton j. 

Substituting (2) into (1) leads to: 

log 2 [\]
�^[\]

3 = γ"" + u"`    (3) 

↔ 

f % = �
�hijk	(^Dleeh?emE)   (4) 

 

This model is a decomposition of the variance of the dependent variable into the different levels. It 

provides the basic partition of the variability in the data between the different levels. In other words, 

the total variance of the UGK 2016 results can be decomposed as the sum of the 2 different levels 

variances: 

• a within-canton variance (level 1): the variance within the cantons about their true means, 

• a between-canton variance (level 2): the variance between the cantons' true means. 

The main goal of this step is to identify differences in results between the cantons that are not due to 

randomness. If such differences did not exist, it would be pointless to develop more complex 

multilevel models aimed precisely at identifying and explaining these differences. The «empty» 

model allows to assess the statistical significance and the size of the between-canton variance i.e. the 

existence and the size of the cantonal effect on the probability to achieve the core competencies. As 

mentioned in Heck, Thomas & Tabata (2012), «little variability between the Level-2 units would 

suggest little need to conduct a multilevel analysis» (p.19). 

Fitting the empty model yields the parameter estimates presented in Table 3. 
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Table 3: Estimates for empty model 

 

The between-canton variance (�?e
� ) is equal to 0.1464 and is statistically significant. It is therefore 

possible to calculate the intraclass correlation coefficient (ICC) which is the fraction of total variability 

that is due to the cantonal level. In a multilevel logistic regression the ICC is defined as follows: 

 

The fraction of total variability that is due to the cantonal level is around 4% in mathematics on the 

national level. From this empty model it is also possible to estimate the probability to achieve the 

core competencies in a «typical» canton (which is a canton where  �0n = 0) using (4). 

f % = �
�hijk	(^Dleeh?emE) = �

�hijk	(^(".*�oph")) = 0.625 =  (6) 

This probability is equal to 62.5%, extremely close to what we can estimate for the national level 

(62.2%). The small difference between these two values is due to the non-linear relationship 

between the logit (whose distribution is symmetrical) and the probability (whose distribution is 

asymmetrical). For more details on this point, see Bressoux (2010) or Raudenbush & Bryk (2002). 

Step 2. Modelling within-group variability: construction of a model for level one 

In this second step of the multilevel model building process we select relevant available level-one 

variables (i.e. students’ characteristics) to explain differences in the achievement of core 

competencies. As mentioned in chapter 5 of the national report, social background, migration status, 

language spoken at home and gender are selected because of their strong correlation with student 

performance and because they are not influenced by the educational offer. Here it is necessary to 

specify to what extent the effects of each of these variables should be modelled as fixed or random 

effects. Indeed, it is possible that the effect of some explanatory variables differ from canton to 

canton, that is, some variables have random slopes. Therefore, the significance of the random slope 

variance was tested for the whole set of explanatory variables. Social background was the only one 

to have such a significant variance. The model specification is defined as follows: 

Level 1 (students) 

q�r 2 stm
�^stm

3 = u"% + u�v����5 %+u�%��� %+uw=��	r2 %+uo=��	r3 % + u*Pqℎ3_2 % + uyPqℎ3_3 %   (7) 
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Level 2 (cantons) 

u"% = z"" + �8%   with   �"%~d(0, �?"� )     (8) 

u� = z"�                                                           (9) 

u�% = z"� + ��%   with   ��%~d(0, �?�� )     (10) 

uw = z"w                                                           (11) 

uo = z"o                                                           (12) 

u* = z"*                                                           (13) 

uy = z"y                                                           (14) 

Substituting (8) to (14) into (7) leads to: 

 

Expressing (15) as a probability leads to:  

 

Fitting the model yields the parameter estimates presented in Table 4. 

Table 4: Estimates for random slope logistic model 

 

In theory, the third and last step of multilevel analysis should be to introduce some relevant level-

two variables (i.e. cantons’ characteristics) into the model in order to explain the intercept and slope 

variances that appear in equations (8) and (10). Unfortunately, it has not been possible to identify 

any significant cantonal explanatory variable in the UGK 2016 dataset.  Therefore, the final model is 

the one presented in Table 4. 

Step 3. Probability to achieve the core competencies for a specific student’s profile 

The level-two variances are still statistically significant after controlling for individual characteristics 

(Table 3). Differences in results between cantons remain even when we control some usual 
sociodemographic characteristics (social background, migration status, language spoken at home and 

gender). In other words, this means that a student with the same sociodemographic characteristics 
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does not have the same chances of achieving the core competencies depending on the canton in 

which they are attending school. One way to illustrate that result is to calculate the estimated 

probabilities of achieving the core competencies (and their confidence interval) in all the cantons for 

some given students’ profiles. To estimate one probability, simply replace the coefficients associated 

with each of the explanatory variables with their estimates in equation (16) and the explanatory 

variables with their value for the selected student profile. The detailed equation to be used is 

presented in (17): 

 

 

To complete the calculation, it is also necessary to estimate the �8% and	��% parameters.  These 

random group effects, also known as posterior means, are estimated using the empirical Bayes 

estimation method. An estimate of their values is available in HLM level-two residual files 
(Raudenbush et al., 2011). The average of the 20 estimates of these parameters for each canton is 

presented in Table 5. 

 

Table 5: Estimates for posterior means 

 

û0j û2j

AG Argovie -0.2666 0.0442

BE_d Berne (germanophone) -0.6642 0.1432

LU Lucerne -0.2844 0.0319

SG Saint-Gall 0.3649 -0.0392

ZH Zurich -0.3164 0.1010

VD Vaud 0.4628 -0.1138

BL Bâle Campagne -0.6035 0.1176

BS Bâle Ville -0.6897 0.1196

FR_d Fribourg (germanophone) -0.0238 0.0157

GR Grisons 0.1611 -0.0239

SO Soleure -0.3469 0.0723

TG Thurgovie 0.0637 -0.0364

SZ Schwytz 0.2896 -0.0248

FR_f Fribourg (francophone) 1.1727 -0.2227

GE Genève -0.0095 0.0140

NE Neuchâtel -0.2979 0.0220

VS_f Valais (francophone) 1.0452 -0.2121

TI Tessin -0.0825 -0.0112

AI Appenzell Rhodes Intérieures 0.4150 -0.0739

AR Appenzell Rhodes Extérieures -0.1531 0.0214

GL Glaris 0.1831 -0.0495

NW Nidwald -0.1272 0.0163

OW Obwald -0.1468 0.0255

SH Schaffhouse 0.1563 -0.0164

UR Uri -0.0470 -0.0025

VS_d Valais (germanophone) 0.2437 -0.0317

ZG Zoug -0.0047 0.0377

BE_f Berne (francophone) -0.0655 0.0071

JU Jura 0.0825 -0.0436

Posterior means
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By analogy to what is described in Hosmer & Lemeshow (2000) we provided 95% interval estimates 

for the fitted values (i.e. the predicted probabilities). Basically, the calculation of this confidence 

interval (CI) associated with the probability of achieving the core competencies for a given student's 

profile can be summarized in the 5 steps listed below:  

- Calculation of the student's logit 

- Estimation of the variance and standard error of the student's logit 

- Calculation of the logit CI (lower and upper limits) 

- Estimation of the probability to achieve the core competencies 

- Calculation of the probability CI (lower and upper limits) 

The general expression for the student's logit is given in (15) and the estimator of this logit, as 

described in (18), simply corresponds to the same equation in which the coefficients have been 

replaced by their estimated value as shown in Table 4 (thus, the value of the logit depends on the 

student's characteristics and on the canton in which they are attending school). 

 

An alternative way to express the estimator of the logit in (18) is to use of vector notation as 

r{(|) = |}u~  
where  

• the vector |} = D1, v����5 %	, ��� %	, =��	r2 %	, =��	r3 %	, Pqℎ3_2 %	, Pqℎ3_3 %E represent the 

intercept and a set of values of the 6 explanatory variables and  

• the vector  u~ } = Du~"%, u~"�, u~�%, u~"w, u~"o, u~"*, u~"yE denotes the estimator of intercepts and slopes. 

For the 5 variables that were modelled as fixed effects, terms u~"�, u~"w, u~"o, u~"*	and u~"y are the 5 

coefficients estimates (z{"�, z{"w, z{"o, z{"*		and z{"y).  Terms u~"% = z{""h?�em and u~�% = z{"�h?��m 

correspond to the estimates of the model's random intercepts (8) and slopes (10) that vary from 

one canton to another.  
 

To estimate the variance and the standard error of the logit above, the estimated covariance matrix 

of the estimated coefficients is also needed. The latter (noted as +� ) is provided by HLM software and 

the average of the 20 estimates is presented in Table 6. 

Table 6: Estimated Covariance Matrix of the Estimated Coefficients in Table 3 
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Once again to use of vector notation is the easiest and most concise way to express the estimator of 

the variance of r{(|)	. The expression for the estimator of the variance is  

+�{5[(r{(|))] = |}+�|  (20) 

and the estimator of the standard error is  

��� = ;+�{5[(r{(|))] = ;|}+�|   (21) 

From the equations above, the 95% student's logit confidence interval can be derived 

�������}
	q�r	�	�= = r{(|) ± 1.96 × ���   (22) 

and the estimator of the probability to achieve the core competencies for a given students’ profile in 

a given canton and its 95% CI  

�������}
	�5����	q	�W = f % = �
�h����(�)    (23) 

 

�������}
	�5����	q	�W	�= = 	 � �
�h�����(�)��.��×��� � ; �

�h�����(�)��.��×��� ��   (24) 

 

4.3 Approaches for the adjustment of cantonal estimates 

In approach 1- separate logistic regression analyses on the basis of multiply imputed and weighted 

data per canton were estimated (see Long, 1997) using the R-package BIFIEsurvey (BIFIE, 2018). The 

regression coefficients mirror the cantonal associations between student background covariates and 

the probability to achieve the basic competences. The covariates included in the model are: gender, 

the language spoken at home, the immigrant status and the social background (SES). Based on these 

canton-specific regression coefficients and the matrix of the student population that corresponds to 

the Swiss population (on the included covariates) we estimated the hypothetical (potential) basic 

competence shares achieved by canton. These hypothetical shares show what shares of students 

within cantons potentially achieved the basic competences if the cantonal student distribution on the 

select covariates corresponded to the Swiss national distribution while the associations between 

background characteristics and achievement remained as they were within cantons (counterfactual 

approach). The main findings remained the same, when robustness checks were conducted by 

including different models and specifying interaction terms between covariates. The main 

disadvantage of approach 1 is, that it bases on a strong and potentially untenable model assumption. 

Namely, it is assumed that the cantonal associations between student background characteristics 

and achievement remained the same even if the composition was different. Hence, in essence, the 

absence of compositional effects was assumed. 

In approach 2- logistic regression analyses on the basis of multiply imputed and weighted Swiss 

national data were conducted (see Long, 1997) using the R-package BIFIEsurvey (BIFIE, 2018). In 

parallel to student-level covariates, aggregate covariates at the cantonal level were included in order 

to account for the varying cantonal compositions of students (due to differences in school systems 

between cantons, aggregate variables on school level were not included). The covariates included in 
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the model were: gender, the language spoken at home, the migrant status and the socio-economic 

status (SES). Due to a curvilinear relationship with the outcome, the aggregate SES was also included 

as quadratic term. Moreover, interactions between the SES and the language spoken at home were 

included. Again, different models for robustness checks were specified. The regression coefficients 

mirror the Swiss national associations between student background covariates, cantonal student 

compositions and the probability to achieve the basic competences. On the basis of these Swiss 

national associations one can calculate the expected probability to achieve the basic competences 

for all combinations of background characteristics. As an example, the expected (Swiss national) 

probability of achieving the basic competences for a male student with second generation migrant 

status who does not speak the test language at home and who attends school in a (cantonal) setting 

of above average shares of migrants and below average SES can be calculated. These expected 

probabilities by covariate combination can then be used in a next step to compute the adjusted 

shares of students achieving the basic competences for the student characteristic distributions in 

each canton. These adjusted shares represent the expected competences for each canton, when the 

different student population compositions are taken into account. An advantage of approach 2 is 

that it explicitly takes into account student composition effects. A disadvantage is that the 

expectations are modelled based on a comparison of similarities across cantons and it could be that 

some combinations are rare (at the cantonal level). This would then result in the computation of 

expectations, which are close to the (unadjusted) observed achievement levels for the cantons 

affected (on the problem of overfitting, see e.g., Pham, Robitzsch, George & Freunberger, 2016, p. 

317).  
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